skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Valentino, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 7, 2026
  2. A bstract The Brownian loop soup (BLS) is a conformally invariant statistical ensemble of random loops in two dimensions characterized by an intensity λ > 0. Recently, we constructed families of operators in the BLS and showed that they transform as conformal primary operators. In this paper we provide an explicit expression for the BLS stress-energy tensor and compute its operator product expansion with other operators. Our results are consistent with the conformal Ward identities and our previous result that the central charge is c = 2 λ . In the case of domains with boundary we identify a boundary operator that has properties consistent with the boundary stress-energy tensor. We show that this operator generates local deformations of the boundary and that it is related to a boundary operator that induces a Brownian excursion starting or ending at its insertion point. 
    more » « less
  3. Abstract We investigate the fine-structure [Cii] line at 158μm as a molecular gas tracer by analyzing the relationship between molecular gas mass (Mmol) and [Cii] line luminosity (L[CII]) in 11,125z≃ 6 star-forming, main-sequence galaxies from thesimbasimulations, with line emission modeled by the Simulator of Galaxy Millimeter/Submillimeter Emission. Though most (∼50%–100%) of the gas mass in our simulations is ionized, the bulk (>50%) of the [Cii] emission comes from the molecular phase. We find a sublinear (slope 0.78 ± 0.01) log L [ C II ] log M mol relation, in contrast with the linear relation derived from observational samples of more massive, metal-rich galaxies atz≲ 6. We derive a median [Cii]-to-Mmolconversion factor ofα[CII]≃ 18M/L. This is lower than the average value of ≃30M/Lderived from observations, which we attribute to lower gas-phase metallicities in our simulations. Thus, a lower, luminosity-dependent conversion factor must be applied when inferring molecular gas masses from [Cii] observations of low-mass galaxies. For our simulations, [Cii] is a better tracer of the molecular gas than COJ= 1–0, especially at the lowest metallicities, where much of the gas isCO-dark. We find thatL[CII]is more tightly correlated withMmolthan with star formation rate (SFR), and both the log L [ C II ] log M mol and log L [ C II ] log SFR relations arise from the Kennicutt–Schmidt relation. Our findings suggest thatL[CII]is a promising tracer of the molecular gas at the earliest cosmic epochs. 
    more » « less